#### Alkynes

Unsaturated hydrocarbons that contain one or more triple bonds between carbon atoms are called **alkynes**. Because alkynes must have a triple bond between carbon atoms, there is no alkyne with only one carbon.

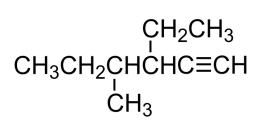
## Straight-chain Alkynes

When an alkyne's carbon-carbon bonds can be connected with a single line, the alkyne is called a **straight-chain alkyne**. Some examples of straight chain alkynes are shown below:

| Name     | Molecular<br>Formula | Structural Formula                 | Condensed<br>Structural Formula |
|----------|----------------------|------------------------------------|---------------------------------|
| Ethyne   | $C_2H_2$             | $H-C\equiv C-H$                    | $CH \equiv CH$                  |
| Propyne  | $C_3H_4$             | H<br>H—C≡C−Ċ−H<br>H                | $CH \equiv C - CH_3$            |
| 1-Butyne | $C_4H_6$             | H H<br>   <br>H—C≡C—C—C—H<br>  H H | $CH \equiv C - CH_2 - CH_3$     |
| 2-Butyne | $C_4H_6$             | $H_3C-C\equiv C-CH_3$              | $CH_3 - C \equiv C - CH_3$      |

Notice that in each alkyne the number of hydrogen atoms two less than twice the number of carbon atoms. This leads us to the general formula for alkynes:

 $C_n H_{2n-2}$ 


Also notice that alkynes with 4 or more carbons, such as butyne, can have the triple bond in different locations. Thus, they must be named differently in order to tell them apart.

## **Example 1**

Determine the general formula for the alkyne that has 7 carbon atoms.

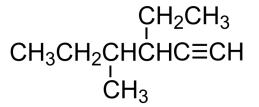
#### **Branched Alkynes**

Alkynes with branched carbon chains are called **branched alkynes**. For example:



## **Naming Alkynes**

Straight-chain and branched alkynes are named in the same way as alkenes. The only difference is that the name of the parent chain ends in *-yne* instead of *-ene*.


# Example 2

Name each of the following alkynes:

- a)  $CH \equiv C CH_2 CH_2 CH_3$
- b)  $CH_3 C \equiv C CH_2 CH_3$
- c)  $CH_3 CH_2 C \equiv C CH_3$

# Example 3

Name the alkyne pictured below.



**Example 4** Name the alkyne pictured below.

$$CH_3 - C \equiv C - C \equiv CH$$